

Гидростатические датчики уровня Как не ошибиться и что о них надо знать

Каким бы простым ни казался метод гидростатического измерения уровня, тем не менее, существуют некоторые особенности при выборе прибора, при установке и условиях дальнейшей эксплуатации которые необходимо учитывать.

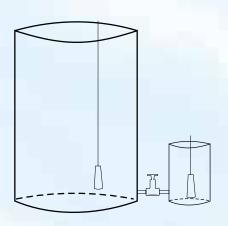
В основе действия гидростатических датчиков уровня лежит закон пропорциональности между высотой столба жидкости и гидростатическим давлением этого столба:

 $P = \rho g h$,

где P – гидростатическое давление столба жидкости, g = 9.8 м/c2 – ускорение свободного падения, ρ – плотность жидкости.

Особенности монтажа, выбора и применения

Существует три основных типа гидростатических уровнемеров – погружные, врезные и фланцевые, выделяемые по типу присоединения к процессу. Так


же, так как этот фактор обуславливает специальные требования кматериалам, из которых изготовлен прибор, имеет смысл выделять гидростатические уровнемеры по типу измеряемых сред: неагрессивная к нержавеющей стали, агрессивная к нержавеющей стали,

пульпообразная, густая и абразивная среды. При выборе метода измерения уровня, следует учитывать, что

корректные измерения гидростатическими датчиками возможны только в средах с постоянной плотностью, так как гидростатическое давление зависит от плотности жидкости и величины уровня. При необходимости решения задачи измерения уровня в средах с меняющейся плотностью, возможна установка двух датчиков уровня. Один прибор устанавливается в емкость для отбора пробы. В емкости обеспечивается постоянный уровень и уровнемер измеряет

плотность, а данные со второго (собственно уровнемера) пересчитываются в контроллере с учетом текущей плотности среды, с которого уже скорректированный сигнал поступает в верхний уровень.

Гидростатические датчики уровня - датчики избыточного давления, которым необходима связь сенсора с атмосферой. У датчиков избыточного давления измеряемая среда (Рср) и атмосферное давление(Ратм бак) действуют с одной стороны чувствительного элемента и только атмосферное давление (Ратм) - с другой.

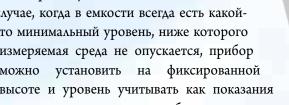
Для открытых ёмкостей, Ратм Ратм бак. Таким образом, атмосферное давление в баке компенсируется атмосферным давлением вне его и датчик измеряет только давление среды.

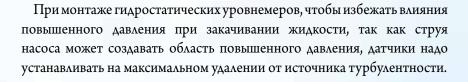
Для измерения уровня в полностью закрытых емкостях, где создаётся избыточное давление (Р изб.) между крышкой емкости и жидкостью, наиболее оптимальным будет применение гидростатических датчиков дифференциального давления. В этом случае, с помощью специального капилляра необходимо связывать датчик дифференциального давления с областью

избыточного давления емкости.

избыточного давления емкости.

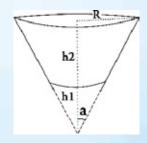
Для подачи атмосферного давления в корпус погружного датчика уровня применяется специальный кабель, который помимо сигнальных линий несет еще и полую трубку, защищенную на обратном конце воздухопроницаемым, но водонепроницаемым фильтром. Корпус погружного датчика воздухопроницаем и


должен быть водонепроницаем (степень пылевлагозащиты IP 68).


ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ

Длина кабеля должна быть больше максимального уровня жидкости в емкости. Так как в гидростатических датчиках уровня используется специальный кабель, то цена кабеля в цене датчика может быть очень существенна. При некоторых условиях можно уменьшить конечную стоимость прибора уменьшив длину кабеля. Для этого надо знать минимальный и максимальный уровень жидкости

в емкости. Как только специальный кабель выведен в атмосферу, сигнал можно передавать далее и обычным кабелем. Технически, переход со специального кабеля в обычный реализуется с помощью клеммной коробки. В случае, когда в емкости всегда есть какой-



то минимальный уровень, ниже которого измеряемая среда не опускается, прибор можно установить на фиксированной высоте и уровень учитывать как показания уровнемера плюс высота столба жидкости под ним.

С помощью гидростатического датчика уровня, можно измерять объём жидкости. Для цилиндрических и параллелепипедообразных емкостей используют формулу V=S*h, где V -

объём, S – площадь основания, h – высота. Для емкостей в форме усеченного конуса $V=\pi(h2^3-h1^3)/3tg^2a$. Для ёмкостей сложных конфигураций емкость необходимо «разделить» на части и рассчитывать по формулам для параллепипеда, цилиндра и конуса. Для горизонтально расположенных цилиндрических емкостей рекомендуется использовать BD Sensors RUS DMD 331-A-S, который позволяет калибровать выходной сигнал по табличным значениям, то есть достаточно точно учитывать кривизну емкости.

Измерение уровня в различных средах

Для измерения гидростатическими датчиками уровня сред неагрессивных к нержавеющей стали, наиболее оптимальны по соотношению цена/решение задачи - уровнемеры с корпусом из нержавеющей стали, керамическим пьезорезистивным сенсором с открытой или защищенной мембраной из нержавеющей стали. Открытая мембрана из нержавеющей стали подходит для случаев измерения загрязненной среды, но без включений могущих повредить мембрану.

Мембрана, закрытая защитным колпачком средах в таких забивается отложениями и прибор начинает выдавать некорректные значения, поэтому, при выборе датчика с защищенной мембраной надо понимать уровень загрязнения среды, то есть частоту, с которой придется очищать мембрану. Это в свою очередь так же нежелательно, так как повышает риск повреждения мембраны при механической очистке. Другими словами, защищенную мембрану имеет смысл использовать для работы в средах с включениями крупнее технологических отверстий в колпачке предназначенных для доступа среды к мембране сенсора. Для сред с включениями могущими повредить мембрану, или сильно загрязненными, лучше использовать приборы с керамической мембраной.

Измерение уровня в агрессивных обуславливает исполнение мембраны, корпуса и уплотнения из специальных некорродирующих материалов слабо корродирующих в измеряемой среде. Сегодня у BD Sensors RUS существуют решения для большинства использующихся в промышленности кислот, щелочей, растворов солей (например,

ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ

BD SENSORS RUS

раствора гипохлорита натрия), морской воды. Например, погружной датчик уровня BD Sensors RUS LMK 858 с керамической мембраной, корпусом из PVDF, уплотнением из EPDM и кабелем с тефлоновым покрытием гарантированно «держит» серную кислоту (H2SO4) концентрацией от 5 до 98 % и температурой до 50 С.

Для погружных уровнемеров так же учитывают и материал, из которого изготовлен кабель. В уровнемерах БД Сенсорс РУС используются четыре типа кабеля: РVС- для воды и жидкостей на водной основе, РUR – для масел и маслообразных жидкостей, FEP – высокоагрессивных жидкостей (сильно концентрированных кислот и щелочей) и ТРЕ для высокотемпературных сред до 125 С. При подборе уровнемера следует учитывать также и рабочую температуру измеряемой среды, так как высокие температуры могут выступать катализаторами или ускорять коррозию материалов, из которых изготовлен прибор. В каждом частном случае, под каждую агрессивную среду прибор подбирают по

Сложность измерения уровня в пульпообразных, густых и абразивных средах обусловленатем, что они требуют использовать мембрану незащищенную колпачком. В целом, оптимальным решением для таких сред являются приборы с керамическими мембранами,

таблицам химической устойчивости веществ.

которые более устойчивы к абразивным средам и могут использоваться без защитных колпачков. Однако следует учитывать, что в общем случае, приборы с керамической мембраной предполагают большую погрешность по сравнению с металлической, а также не рекомендованы для использования в системах где возможны гидроудары.

Датчики уровня	LMP 331	LMP 331i	LMK 331	LMP 308/808 LMP 305/306/307	LMK 351	LMK 358/358H/858
		-				
Принцип измерения		рический		Емкостной		
Материал мембраны	Сталь		Керамика 96%	Сталь	Керамика 96%, Керамика 99,9%	
Тип давления	Избыточное, абсолютное		Избыточное, абсолютное	Избыточное	Избыточное	Избыточное
Диапазон измерения	от 4 кПа до 250 МПа	от 17 кПа до 60 МПа	от 60 кПа до 60 МПа	от 0,4 до 250 м.вод. ст.	от 4 кПа до 1 МПа	от 0,4 до 100 м.вод.ст.
Выходной сигнал	420 MA 020 MA 010 B; 05 B 111 B; 16 B 0,54,5 B 0,83,2 B	420 мА 010 В	420MA 020 MA 010 B 05 B 111 B 16 B	420 MA 020 MA 010 B 05 B 111 B 16 B	420 мА	420 mA 420 mA / HART
Напряжение питания	1236 B; 615 B 5 B	1236 B	1236 B	1236 B	936 B	936 B
Основная погрешность	0,5 / 0,35 /0,25 % / 0,1 % ДИ	0,1 % ДИ	0,5 % ДИ	0,5 / 0,35 / 0,25 % ДИ	0,35 / 0,25 % ДИ	0,2 / 0,35 % ДИ
Механическое присоединение	G 3/4", G 1/2", G 1/4", M20х1.5, M12х1, M10х1, M12х1.5, 1/2" NPT, 1/4" NPT и другие			Ø 17 - LMP 306 Ø 19 - LMP 305 Ø 27 - LMP 307 Ø 35 - LMP 308/808	G 1 1/2"	Ø 39.5 / Ø 45
Электрическое присоединение	DIN 43650, M12x1, Binder 723, Buccaneer, кабельный ввод PG7, полевой корпус и другие			Кабель. Материал оболочки: PVC, PUR, FEP	DIN 43650 и другие	Кабель. Материал оболочки: PVC, PUR, FEP
Материал корпуса	Сталь		Сталь, PVC, PVDF	Сталь, PVC	Сталь, PVC, PVDF	Сталь, PVC
Диапазон те мператур измеряемой среды	-40125 °C	-40125 °C	-25135 °C	-2070 °C - LMK 308	-25125 °C	-1070 °C - LMP 358 050 °C - LMP 858
Диапазон температур окружающей среды	-4085 °C	-4085 °C	-4085 °C	050 °C - LMK 808	-2585 °C	
	Общепро мышленные датчики	Высокоточные датчики	Датчики для измерения давления агрессивных сред	Погружные датчики уровня	Врезной датчик уровня для агрессивных сред	Погружные датчики уровня для агрессивных сред